The Jurisprudence of Big Data: Legal Limits of Predictive Analytics in Criminal Justice Risk Assessment Models
Keywords:
Predictive Justice, Algorithmic Governance, Criminal Justice, Risk Assessment, Constitutional Law, Big Data, Artificial Intelligence, Legal TheoryAbstract
The rapid integration of predictive analytics into criminal justice systems has transformed the architecture of legal decision-making by introducing algorithmic risk assessment tools into pre-trial processes, sentencing, parole, probation, and policing. While these technologies promise increased efficiency, consistency, and anticipatory capacity, they simultaneously generate profound jurisprudential and constitutional challenges. This article offers a comprehensive narrative review and descriptive–analytical examination of the theoretical foundations, technical architecture, and normative consequences of predictive criminal justice. Drawing upon interdisciplinary scholarship in law, criminology, data science, and political theory, the study traces the shift from classical legal rationality toward algorithmic governance and evaluates its implications for core legal principles. The analysis demonstrates that predictive systems fundamentally destabilize the principles of legality, due process, equality before the law, and the presumption of innocence by substituting probabilistic forecasting for individualized legal judgment. Moreover, structural bias, feedback amplification, and algorithmic opacity undermine procedural fairness and intensify social inequality, particularly for marginalized populations. The article further argues that predictive governance redistributes legal authority from courts to opaque technical systems and private actors, eroding democratic accountability and judicial autonomy. Through comparative constitutional analysis, the study highlights divergent regulatory responses across jurisdictions and emphasizes the urgent need for a renewed constitutional framework capable of constraining algorithmic power. Ultimately, the article contends that the legal limits of predictive criminal justice are anchored in the normative foundations of constitutionalism itself, requiring a reassertion of human judgment, transparency, and rights-based adjudication in the governance of emerging technologies.
References
Albrecht, H. J. (2020). Data, Data Banks and Security. European Journal for Security Research, 5(1), 5-23. https://doi.org/10.1007/s41125-019-00062-9
Aradau, C., & Blanke, T. (2016). Politics of Prediction. European Journal of Social Theory, 20(3), 373-391. https://doi.org/10.1177/1368431016667623
Berk, R. A. (2013). Algorithmic Criminology. Security Informatics, 2(1). https://doi.org/10.1186/2190-8532-2-5
Brayne, S. (2017). Big Data Surveillance: The Case of Policing. American Sociological Review, 82(5), 977-1008. https://doi.org/10.1177/0003122417725865
Brayne, S. (2020). Directed Surveillance. 56-73. https://doi.org/10.1093/oso/9780190684099.003.0004
Caplan, J. M., Kennedy, L. W., Barnum, J. D., & Piza, E. L. (2017). Crime in Context: Utilizing Risk Terrain Modeling and Conjunctive Analysis of Case Configurations to Explore the Dynamics of Criminogenic Behavior Settings. Journal of Contemporary Criminal Justice, 33(2), 133-151. https://doi.org/10.1177/1043986216688814
Carlsmith, K. M., Darley, J. M., & Robinson, P. H. (2002). Why Do We Punish? Deterrence and Just Deserts as Motives for Punishment. Journal of personality and social psychology, 83(2), 284-299. https://doi.org/10.1037/0022-3514.83.2.284
Chowdhury, P. D., Domínguez, A., Ramokapane, K. M., & Rashid, A. (2022). The Political Economy of Privacy Enhancing Technologies. https://doi.org/10.48550/arxiv.2202.08548
Corbett‐Davies, S., Pierson, E., Feller, A., Goel, S., & Huq, A. Z. (2017). Algorithmic Decision Making and the Cost of Fairness. 797-806. https://doi.org/10.1145/3097983.3098095
Darley, J. M., Carlsmith, K. M., & Robinson, P. H. (2000). Incapacitation and Just Deserts as Motives for Punishment. Law and Human Behavior, 24(6), 659-683. https://doi.org/10.1023/a:1005552203727
Desouza, K. C., & Jacob, B. (2014). Big Data in the Public Sector: Lessons for Practitioners and Scholars. Administration & society, 49(7), 1043-1064. https://doi.org/10.1177/0095399714555751
Dinov, I. D., Heavner, B., Tang, M., Glusman, G., Chard, K., D’Arcy, M., Madduri, R., Pa, J., Spino, C., Kesselman, C., Foster, I., Deutsch, E. W., Price, N. D., Horn, J. D. V., Ames, J., Clark, K., Hood, L., Hampstead, B. M., Dauer, W. T., & Toga, A. W. (2016). Predictive Big Data Analytics: A Study of Parkinson’s Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations. PLoS One, 11(8), e0157077. https://doi.org/10.1371/journal.pone.0157077
Duwe, G., & Rocque, M. (2017). Effects of Automating Recidivism Risk Assessment on Reliability, Predictive Validity, and Return on Investment (ROI). Criminology & Public Policy, 16(1), 235-269. https://doi.org/10.1111/1745-9133.12270
Ferguson, A. G. (2019). Predictive Policing Theory. 491-510. https://doi.org/10.1017/9781108354721.025
Greene, T., Shmueli, G., Fell, J., Lin, C.-F., & Liu, H. W. (2022). Forks Over Knives: Predictive Inconsistency in Criminal Justice Algorithmic Risk Assessment Tools. Journal of the Royal Statistical Society Series a (Statistics in Society), 185(Supplement_2), S692-S723. https://doi.org/10.1111/rssa.12966
Helbich, M., & Leitner, M. (2017). Frontiers in Spatial and Spatiotemporal Crime Analytics—An Editorial. Isprs International Journal of Geo-Information, 6(3), 73. https://doi.org/10.3390/ijgi6030073
Hossin, M. A., Du, J., Mu, L., & Asante, I. O. (2023). Big Data-Driven Public Policy Decisions: Transformation Toward Smart Governance. Sage Open, 13(4). https://doi.org/10.1177/21582440231215123
Kaif, M., Rashid, L., & Singh, S. (2023). Crime Rate Prediction Using Data Mining Techniques. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets40779
Kennedy, L. W., Caplan, J. M., Piza, E. L., & Buccine‐Schraeder, H. (2015). Vulnerability and Exposure to Crime: Applying Risk Terrain Modeling to the Study of Assault in Chicago. Applied Spatial Analysis and Policy, 9(4), 529-548. https://doi.org/10.1007/s12061-015-9165-z
Kernchen, R. (2021). Risk Forecasting in the Light of Big Data. Journal of Risk Analysis and Crisis Response, 10(4), 160. https://doi.org/10.2991/jracr.k.201230.001
Kounadi, O., Ristea, A., Araujo, A. d., & Leitner, M. (2020). A Systematic Review on Spatial Crime Forecasting. Crime Science, 9(1). https://doi.org/10.1186/s40163-020-00116-7
Kreitner, R. (2010). Biographing Realist Jurisprudence. Law & Social Inquiry, 35(03), 765-791. https://doi.org/10.1111/j.1747-4469.2010.01201.x
Law, J., Quick, M., & Chan, P. W. (2014). Analyzing Hotspots of Crime Using ABayesian Spatiotemporal Modeling Approach: A Case Study of Violent Crime in TheGreaterTorontoArea. Geographical Analysis, 47(1), 1-19. https://doi.org/10.1111/gean.12047
MacDonald, Z. (2002). Official Crime Statistics: Their Use and Interpretation. The Economic Journal, 112(477), F85-F106. https://doi.org/10.1111/1468-0297.00685
Mugari, I., & Obioha, E. E. (2021). Predictive Policing and Crime Control in the United States of America and Europe: Trends in a Decade of Research and the Future of Predictive Policing. Social Sciences, 10(6), 234. https://doi.org/10.3390/socsci10060234
Myer, W. (2019). Get on the Scene Like a Tax Machine. Legal Information Management, 19(01), 61-62. https://doi.org/10.1017/s1472669619000136
Oatley, G. (2021). Themes in Data Mining, Big Data, and Crime Analytics. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 12(2). https://doi.org/10.1002/widm.1432
Papachristos, A. V., Hureau, D. M., & Braga, A. A. (2013). The Corner and the Crew: The Influence of Geography and Social Networks on Gang Violence. American Sociological Review, 78(3), 417-447. https://doi.org/10.1177/0003122413486800
Richards, M. J., & Kritzer, H. M. (2002). Jurisprudential Regimes in Supreme Court Decision Making. American Political Science Review, 96(2), 305-320. https://doi.org/10.1017/s0003055402000187
Sanders, C. B., & Sheptycki, J. (2017). Policing, Crime and ‘Big Data’; Towards a Critique of the Moral Economy of Stochastic Governance. Crime Law and Social Change, 68(1-2), 1-15. https://doi.org/10.1007/s10611-016-9678-7
Sushina, T., & Sobenin, A. A. (2020). Artificial Intelligence in the Criminal Justice System: Leading Trends and Possibilities. https://doi.org/10.2991/assehr.k.200526.062
Tuffuor, K. A. (2022). Bearing of Scientific Data on Legal Reasoning. Ucc Law Journal, 2(2), 13-40. https://doi.org/10.47963/ucclj.v2i2.1117
Wang, C., Sen, M. R., Yao, B., Certik, M., & Randrianarivony, K. A. (2021). Harnessing Machine Learning Emerging Technology in Financial Investment Industry: Machine Learning Credit Rating Model Implementation. Journal of Financial Risk Management, 10(03), 317-341. https://doi.org/10.4236/jfrm.2021.103019
Zaitseva, O. V., Polikarpova, I. V., Khutov, K. M., & Zaitsev, D. V. (2021). Improving the Effectiveness of Prevention in the Context of the Limits of the Criminal Law. SHS Web of Conferences, 108, 02011. https://doi.org/10.1051/shsconf/202110802011
Ződi, Z. (2017). Law and Legal Science in the Age of Big Data. Intersections, 3(2). https://doi.org/10.17356/ieejsp.v3i2.324
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.